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Abstract—Based on an information theoretical approach, we investigate feature selection processes
in saccadic object and scene analysis. Saccadic eye movements of human observers are recorded
for a variety of natural and arti� cial test images. These experimental data are used for a statistical
evaluation of the � xated image regions. Analysis of second-order statistics indicates that regions with
higher spatial variance have a higher probability to be � xated, but no signi� cant differences beyond
these variance effects could be found at the level of power spectra. By contrast, an investigation
with higher-order statistics, as re� ected in the bispectral density, yielded clear structural differences
between the image regions selected by saccadic eye movements as opposed to regions selected by
a random process. These results indicate that nonredundant, intrinsically two-dimensional image
features like curved lines and edges, occlusions, isolated spots, etc. play an important role in the
saccadic selection process which must be integrated with top-down knowledge to fully predict object
and scene analysis by human observers.

1. INTRODUCTION

The analysis of complex objects or scenes by a sequence of rapid saccadic eye
movements is a prototypical example of the ef� ciency biological agents can achieve
with respect to sensorimotor information processing. In general, this ef� ciency
can be regarded to result from an evolutionary adaptation to the regularities of the
complex terrestrian environment. A well known example for such an adaptation is
the structure of receptive � elds along the visual pathway. During recent years, a
steadily increasing amount of evidence has shown that basic properties like lateral
inhibition (van Hateren, 1992) and orientation selectivity (Olshausen and Field,
1996), as well as more sophisticated mechanisms like cortical gain control (Zetzsche
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et al., 1999), can all be understood as an adaptation of the neural connectivity to
the environmental structure (for review see Atick (1992); Zetzsche and Krieger
(1999)).

While adaptation takes place at various structural levels and on different time
scales, there is a common underlying principle: the optimized allocation of a limited
amount of neural processing resources to environmental data and behavioral tasks
of nearly unlimited complexity. This principle is also the basis of the ef� cient
selection strategy of the saccadic system. Since it would not be affordable for
any reasonable system to process its complete optical surrounding with maximum
spatial resolution, the system uses inhomogeneous spatial sampling. The majority
of the information processing machinery is concentrated into a narrow range of a
few degree of the visual � eld, the fovea centralis, whereas the remainder, orders
of magnitude larger in area, is served by a much coarser representation (Dowling,
1987) with limited processing power (Rentschler and Treutwein, 1985; Strasburger
et al., 1994). However, such a strategy can only work without the risk of a complete
miss of important information, if there are ef� cient mechanisms available which
can rapidly redirect the foveal region to the important locations within the visual
scene (cf. also Rao and Ballard (1995)). This is an example for the allocation of
limited resources on a short time scale. The saccadic system can allocate the foveal
processing resources within parts of a second by rapid ballistic movements with
velocities of up to 700 deg/s. However, while many details of the saccadic system,
like the timing parameters, the motoric control, or the re� exive mechanisms for the
selection of transient targets, are quite well understood today, the powerful strategies
by which the system manages to select the relevant parts out of complex scenes are
still a challenging research problem.

We try to tackle this problem by a multi-disciplinary approach (Zetzsche et al.,
1998), which involves participants with expertise in experimental psychology,
visual psychophysics and modelling, statistical signal processing, and knowledge
based system design. By this, we cover the research areas which are, in our
view, necessary for the analysis, understanding, and modelling of a complete
sensorimotor loop like the saccadic eye movement system. In this paper we
concentrate on the analysis of the bottom-up aspects of this system. The � nal goal
of the project is the provision of a model which can take natural images as input and
derives predictions about the � xations of human observers on these images.

For our investigations, we have � rst obtained an empirical database by recording
the eye movements of human observers on a variety of arti� cial and natural images
(Section 2). From these data, we want to derive suggestions about the processing
mechanisms in early vision which are involved in the signalling of those ‘salient’
image locations which can be selected by saccadic � xations. Central for our
research and modelling is statistical information theory. Hence, we investigate the
differences between the statistical properties of those image regions which were
selected by � xations, as opposed to the average statistics of randomly selected
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regions (Section 3). The results of this statistical analysis are then used to derive
a suggestion for a speci� c kind of nonlinear ‘saliency-detector’ in early vision
(Section 4).

2. METHODS

Images have been chosen from seven different topical classes (portraits, landscapes,
technics, architecture, computer graphics, polygones, and textured polygons) to
enable a differentiated analysis, and to avoid any bias on the relevant image features.
Every class contained 7 images, hence a total number of 49 images has been
investigated. All images were grey-level images of size 512 £ 512.

Eleven paid subjects with a mean age of 27 years participated in the experiment.
They were naive with respect to the objectives of the study. The subjects were
instructed to view each image as carefully as possible, to be able to perform
subsequent tests with the images. The subjects were � rst shown a subset of 10
randomly selected images, which served as training images, and recordings were
evaluated separately for these images. After a short pause and a recalibration, the
main experiment was performed with the 49 images of the set. Each image was
presented to the subject for � ve seconds, and eye movements were recorded during
the whole presentation.

The experiments took place in a moderately illuminated room. Stimuli were
presented on a 21 inch video monitor (CONRAC 7550 C21) with 1024 £ 768 pixels
spatial resolution at a frame rate of 100 Hz. Screen background luminance was set
to 3 cd/m2; the luminance of the stimuli was 25 cd/m2. Subjects viewed the screen
binocularly from a distance of 80 cm. The total image size was 18 £ 18 deg. Head
movements were restricted by a biteboard and a forehead rest. Eye movements
were measured with an SRI Generation 5.5 Purkinje-image eyetracker (Crane and
Steele, 1985) sampled at 400 Hz. Its frequency response is better than 250 Hz with
a noise level equivalent to about 20 arc seconds rms. The eyetracker can follow
saccades of 15 degrees or more without losing the eye. Each session started with
a calibration procedure: the subject sequentially � xated 9 positions arranged on a
circular array of 8 degrees radius. The eyetracker behaved linearly within this range.
Static accuracy of the eyetracker was better than 0.1 degrees. Experiments were
controlled by a 486 PC, which also performed automatic off-line analysis of the eye
movement data in which saccadic latencies and saccade start and end positions were
determined.

Small regions around the � xation points of the subjects were extracted for
statistical analysis (cf. Fig. 1). Several types of statistics were computed for these
regions and compared to the ‘average’ statistics, as obtained from randomly selected
regions. Differences in the statistics should indicate which image features are
preferred in the selection process.
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3. RESULTS

From Fig. 1 it becomes apparent that the locations of saccadic eye movements are
not randomly distributed across natural scenes. However, it is also evident that even
if the saccadic selection process would be completely deterministic, there is a high
degree of variability in the data. Because of this, and since we assume that statistical
redundancies of the images have an important in� uence on the regions selected for
� xation, we have investigated the statistical properties of the � xated image regions.
For our analysis, we used the 7 images shown in Fig. 1.

3.1. Analysis of spatial variance

In a � rst step, we measured the signal variability ¾ 2
eye of � xated image regions and

compared it to the variance ¾ 2
rand of regions, which had been chosen by a random

number generator:

¾ 2
eye

¾ 2
rand

D

P
Exeye

P
Ex2W

£
u.Exeye ¡ Ex/ ¡ Nu

¤2

P
Exrand

P
Ex2W

£
u.Exrand ¡ Ex/ ¡ Nu

¤2 : (1)

Here u.Ex/ is the image intensity at Ex and Nu is the mean intensity value within a local
window W , which in our analysis spanned 1=8 of the total image size. The vectors
Exeye and Exrand indicate the center of � xated and randomly selected image regions,
respectively.

Figure 1. Test images used in our experiments. The small circles indicate positions of saccadic
� xations.
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As can be seen from Table 1, for most images the regions selected by eye
movements had a signi� cantly higher amount of signal variability. The only
exception was the lake scene of Fig. 1, where the variance was approximately equal
for both the randomly selected and the � xated regions. For the whole set of images
we obtained a variance ratio of ¾ 2

eye=¾ 2
rand D 1:35.

3.2. Second-order statistics

The analysis of spatial variance is only a very crude approximation of the statistical
dependencies within a local window. A more detailed characterization may be
obtained by the autocorrelation function or its frequency domain counterpart, the
power spectrum. In Fig. 2 we compare the power spectra of � xated and randomly
chosen image regions. It turns out that the power spectra do not substantially differ
in their basic shape. Similar results have been reported in (Reinagl and Zador,
1999), which also found a strong in� uence of the local contrast (variance) but only
a small reduction of the second-order correlations in the � xated patches. Second-
order statistics are hence insuf� cient for a clear-cut characterization of the structural
properties of the � xated image regions. However, since there is evidence that the
selection process in saccadic scene analysis cannot be reduced to mere variance
selection, we have considered higher-order statistics of the � xated regions.

3.3. Higher-order statistics

One measure for higher-order dependencies is provided by the third-order cumulant
cu

3 , which basically calculates the expectation of an image which has been multiplied
by two shifted copies of itself. For a zero-mean stationary random process fu.Ex/g,
the third-order cumulant cu

3 is de� ned as:

cu
3.Ex1; Ex2/ D E

£
u.Ex/ ¢ u.Ex C Ex1/ ¢ u.Ex C Ex2/

¤
: (2)

As for autocorrelations, higher-order statistics are often more conveniently investi-
gated in the frequency domain. The Fourier transform of cu

3 is known as the bispec-
trum CU

3 :

CU
3

¡ Ef1; Ef2

¢
D F

©
cu

3.Ex1; Ex2/
ª
: (3)

Table 1.
Analysis of spatial variance

Monaco Lena Moscow Tears Lake Poly Castle
P

N� x 125 136 131 139 159 140 141 971
¾ 2

eye 1879 1598 2065 2640 930 716 2586 1753
¾ 2

rand 1400 1438 1812 1059 957 512 2002 1299
¾ 2

eye=¾ 2
rand 1.34 1.11 1.14 2.49 0.97 1.40 1.29 1.35
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Figure 2. Power spectra of image regions selected by eye � xations (upper left) and by a random
number generator (lower left). The two power spectra do not substantially differ in their basic shape.
Their ratio (right) is consistently 6 1, which is in agreement with our analysis of the variance. For
low frequencies the ratio is close to one, thus indicating an approximately equal contribution in both
cases. For higher spatial frequencies � xated image regions contribute more power than randomly
chosen regions. This is consistent with a slightly steeper decay of the autocorrelation function as
reported in Reinagl and Zador (1999).

Alternatively, the Fourier-Stieltjes representation of fu.Ex/g offers the possibility
to express the bispectrum directly in terms of the frequency components dU. Ef /

(Nikias and Petropulu, 1993):

E[dU. Ef1/ ¢ dU. Ef2/ ¢ dU ¤. Ef3/] D
»

CU
3 . Ef1; Ef2/ ¢ d Ef1d Ef2 if Ef3 D Ef1 C Ef2

0 otherwise.
(4)

From this equation it becomes apparent that the bispectrum measures the statistical
dependencies between three frequency components, the sum of which equals zero.
A direct computation in the frequency domain can also be derived from this notation
(Nikias and Petropulu, 1993).

In Fig. 3 we compare the bispectra of � xated image regions to those of randomly
chosen areas. Unlike the second-order spectra of Fig. 2, the two bispectra differ
in their basic shape: For the randomly chosen regions we obtain a star-like
shape of the bispectrum, which indicates strong statistical dependencies between
frequency components aligned to each other with respect to orientation. This
is consistent with our systematic investigations of the bispectra of a large set of
natural images (Krieger et al., 1997). In contrast, the bispectrum of � xated regions
exhibits sections with more circular structures, thus indicating a strong simultaneous
contribution from frequency components of different orientations within the local
windows.
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Figure 3. Bispectra of image regions selected either by a random number generator (left), by saccadic
eye movements (middle), or by an i2D-operator (right). Shown are several sections of the bispectral
magnitude jCU

3 .[fx1; fy1]; [fx2; fy2]/j with .fx1; fy1/ D const: (cf. the coordinate axes depicted in

Fig. 4). For the random sample (C
Urand
3 , left), the bispectral ‘energy’ is concentrated in those regions

where the frequency components are aligned to each other with respect to orientation. In contrast,

the bispectrum of � xated image regions (C
Ueye
3 , middle) shows an ‘energy’ distribution which is more

circular around the void points [fx1; fy1] D [0; 0], [fx2; fy2] D [0; 0] and [fx1 C fx2; fy1 C fy2] D
[0; 0]. This indicates that the eye (as opposed to the random number generator) selects more
often image regions with strong statistical dependencies between frequency components of different

orientation. Shown on the right is the bispectrum C
Ui2D
3 of curved image regions, which have been

extracted from the seven images depicted in Fig. 1 by i2D-selective operators tuned to high curvatures
(cf. Section 4.3). The image regions selected by i2D-operators show also the more circular bispectral
‘energy’-distribution found for � xated image regions.

4. DISCUSSION

4.1. Interpretation of the statistical results

How can we interpret these results? First, the � ndings of Section 3.1 indicate
that the saccadic selection system avoids the � xation of image regions with little
structural content (low variance), such as regions with approximately constant
luminance. Similar results have been reported by (Mannan et al., 1996; Reinagl
and Zador, 1999). This � ts with the basic operation of lateral inhibition in low
level vision, since neurons with center-surround antagonism suppress the response
to constant regions and enhance the response to varying signals like edges, lines
etc. Such a basic distinction of structure vs. non-structure cannot differentiate
between different types of structure, however. We thus applied the standard second-
order analysis of the data via power spectra, but could not obtain a substantial
difference between � xated and randomly selected regions. However, we were
able to � nd signi� cant differences in the higher-order statistics. The statistical
structure of image regions is dominated by the presence of statistical dependencies
between frequency components with aligned orientations, and this is consistent
with the frequent occurence of straight edges or lines. The bispectra of � xated
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image regions show a different pattern. Here the bispectral ‘energy’ is not con-
centrated on frequency components with aligned orientations, but is more or less
evenly distributed on the possible combinations. This implies that the saccadic
selection system avoids image regions, which are dominated by a single oriented
structure. Instead it selects regions containing different orientations, like occlusions,
corners, etc.

4.2. The concept of intrinsic dimensionality

These statistical observations � t well with the idea of an information-theoretic
hierarchy in terms of intrinsic dimensionality (Zetzsche and Barth, 1990a, b;
Zetzsche et al., 1993). The concept of intrinsic dimensionality relates the degrees
of freedom provided by a signal domain to the degress of freedom actually used
by a given signal and thus provides a hierarchy of local image signals in terms of
different degrees of redundancy:

i0D-signals are constant, i.e. u.x; y/ D const within a local window.

i1D-signals can locally be approximated by a function of only one variable, i.e.
u.x; y/ D u.ax C by/. Examples are straight lines and edges. Sinusoidal
gratings, the eigenfunctions of linear systems, are also members of this class.

i2D-signals are neither i0D nor i1D. Examples are corners, junctions, curved lines
and edges, etc.

This hierarchy seems well suited for the description of saccadic eye movements.
First, i0D-signals are least frequently � xated, as indicated by the results on the
higher variance of the � xated regions. Second, i2D-signals are more attractive
targets than i1D-signals. An early report (Mackworth and Morandi, 1967) suggested
that the ‘gaze selects informative details’, and that the most informative details
seem to be curved contours (i2D-signals). Similar results have been obtained
by Bozkov et al. (1982) and Zetzsche and Deubel (1990) for � xations on simple
polygons. In such � gures the corners (i2D-signals) are more often � xated than
the straight contour lines (i1D-signals), or the interior regions (i0D-signals). The
special importance of i2D-signals has also been emphasized in the context of
redundancy reduction (Attneave, 1954) and visual object recognition (Biedermann,
1987). Furthermore, the least redundant i2D-information is basically suf� cient for
a reconstruction of the original image signal (Barth et al., 1993).

The hierarchy of intrinsic dimensionality is related to the types of neural opera-
tions occuring in early vision, which can be seen as the result of an ef� cient adap-
tation to the statistical properties of the natural environment. Evolution caused not
only the development of linear isotropic and orientation-selective neurons, but also
of nonlinear i2D-selective cells known as ‘hypercomplex’ or ‘end-stopped’. In pri-
mates, about half of the neurons in area V2 of the visual cortex exhibit such a
preference to i2D-stimuli (Orban, 1984).
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All this suggests that i2D-signals provide signi� cant information about complex
scenes and that i2D-selective detectors may be important members of the class of
‘saliency detectors’. However, unlike classical � lters such operators are highly non-
linear devices thus requiring special techniques for their modelling and functional
analysis (Zetzsche and Barth, 1990a).

4.3. i2D-selective operators

Suitable i2D-selective operators can be developed by a 65-approach (Zetzsche
and Barth, 1990a, b) or by the Volterra-Wiener expansion of nonlinear functionals
(Krieger and Zetzsche, 1996). The Volterra series relates the input u1.Ex/ of a
nonlinear, shift invariant system to its output u2.Ex/ in the following way (Reichardt
and Poggio, 1981; Schetzen, 1989):

u2.Ex/ D h0 C
Z

h1.Ex1/ ¢ u1.Ex ¡ Ex1/ ¢ dEx1

C
ZZ

h2.Ex1; Ex2/ ¢ u1.Ex ¡ Ex1/ ¢ u1.Ex ¡ Ex2/ ¢ dEx1dEx2 C ¢ ¢ ¢ : (5)

The quadratic part of equation (5) may be expressed in the frequency domain as

U2. Ef / D
Z

QU2

¡ Ef1; Ef ¡ Ef1

¢
¢ d Ef1; (6)

where

QU2

¡ Ef1; Ef2

¢
D H2

¡ Ef1; Ef2

¢
¢ U1

¡ Ef1

¢
¢ U1

¡ Ef2

¢
; (7)

is the expanded output spectrum and H2. Ef1; Ef2/ is the Fourier transform of the
second-order Volterra kernel h2.Ex1; Ex2/. Note that equation (7) may be regarded
as the weighting of an AND-like conjunction between frequency components. A
necessary and suf� cient condition for a quadratic Volterra operator to be insensitive
to i0D- and i1D-signals is given by Krieger and Zetzsche (1996):

H2.fx1; fy1; fx2; fy2/ D 0 8 fx1 ¢ fy2 D fy1 ¢ fx2: (8)

Systems constrained by this condition block aligned frequency components (see
Fig. 4, an example is provided in Fig. 5). Thus they will yield the required selectivity
as indicated by the polyspectral measurements (Fig. 3).

In order to test the predictions derived from the functional properties of i2D-
operators, we have also computed the bispectra of image regions selected by this
class of nonlinear curvature-selective saliency detectors. As can be seen from
Fig. 3 (right), the image regions extracted by i2D-operators show strong statistical
dependencies between frequency components of different orientations, resulting in
a ‘circular’ bispectrum CUi2D

3 which is similar to C
Ueye
3 . Thus, i2D-selective operators

may indeed explain a substantial aspect of the saccadic selection process.
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Figure 4. (Left) Illustration of the forbidden zones (indicated as black lines) for an i2D-selective
Volterra kernel H2.fx1; fy1; fx2; fy2/ in the frequency-domain. A quadratic system with its
symmetric kernel vanishing in the forbidden zones blocks frequency components of equal orientation
(Krieger and Zetzsche, 1996). Note also the structural relationship of the forbidden zones to the

concentration of the bispectral energy C
Urand
3 in Fig. 3. (Right) Prototypical example of the kernel

of an i2D-selective quadratic Volterra operator. Since the forbidden zones are taken into account, the
operator will only respond to i2D-signals. The operator will thus enhance bispectral regions with

non-aligned frequency components (cf. C
Ui2D
3 in Fig. 3).

Figure 5. Application of i2D-selective operators to ‘natural’ images. It is apparent that the sparsely
distributed regions which are selected by such operators carry a substantial amount of information
about the images. The selection is also in good qualitative agreement with the saccadic � xations on
these images.
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Figure 6. Integrated system for the combination of bottom-up and top-down processing. Based on
the current sensory input and on the actual belief distribution in the hierarchical knowledge base, the
strategy calculates the action for the greatest information gain, i.e. the eye movement with the greatest
potential for a change of the actual belief distribution. A saccadic eye movement thus corresponds to
the ‘best question to ask’ in order to obtain the maximum information about the scene.

However, while it may well be possible to identify nearly all potentially interesting
locations within a complex scene by the use of a speci� c set of ‘saliency detectors’,
it would usually not be an optimal strategy to systematically scan all these potential
� xation regions. Rather, it must be possible to select a subset out of this
‘preselection’, and it must also be possible to � xate points outside the preselected
set (note, however, that untrained subjects have great dif� culties in making a
saccadic eye movement to a certain position in space if they are confronted with
a smooth surface of constant luminance). This implies that any model which is
based solely on botttom-up processes can only provide an approximate statistical
prediction of the � xations by human observers, and indeed it has been shown that
top-down in� uences may have a substantial in� uence on the pattern of saccadic
� xations (Yarbus, 1967). We have hence started an interdisciplinary project in
which we investigate how the bottom-up / low-level feature extraction process can be
combined with top-down in� uences from a higher-level knowledge-based scheme
to obtain one integrated architecture for the whole system (cf. Fig. 6, Zetzsche
et al., 1998; Schill et al., 1999).

The knowledge-based top-down component has three main characteristics: (i) In
contrast to the common assumption of a purely sensory respresentation of objects
and scenes it is based on a sensori-motor respresentation, which combines sensory
features with motor actions (eye movements). This representation is not determin-
istic, in the sense of associating each scene or object with a � xed sequence of eye
movements, as in the scan-path theory (Noton and Stark, 1971), but rather each
sensori-motor ‘vector’ (i.e. triple feature / eye-movement / feature) can provide dif-
ferent degrees of supporting evidence for the various hypotheses about the current
scene. (ii) The evidences are learned by the system in a supervised training proce-
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dure and their combination for speci� c hypotheses is obtained within the framework
of Dempster–Shafer theory (Shafer, 1976), which allows the handling of con� icting
hypotheses, incomplete knowledge, and the distinction between non-supporting ev-
idence and a mere lack of knowledge. (iii) The systems strategy for the gathering of
new knowledge is based on the principle of the maximum information gain (Schill,
1997). The actual belief situation is realized as the activity distribution in a hier-
archical network. The potential in� uence of the various possible eye movements
on this activity distribution is evaluated, and the eye movement with the greatest
potential for a change is selected as the next action.

In this philosopy, the exploration of a scene by saccadic eye movements corre-
sponds to a sequence of ‘best questions to ask’. These best questions are both
in� uenced by a priori information about the basic statistical regularities of the en-
vironment and by cognitive higher-level representations and inference processes.
Here we have presented some � rst approaches towards the investigation and mod-
elling of the underlying structures and processes, but these are still far away from
the ef� ciency and ingenuity of the biological system. Saccadic scene analysis thus
remains a challenging topic for future research.
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